I don’t do as much Rubik’s cube solving as I used to and I’m afraid I’m going to eventually forget some algorithms. So I decided to write down the ones I use, starting with the PLLs.
The U movements between square brackets at the end indicate the AUF (they are not cube rotations).
Corners only
Name | Image | Algorithm | Comment |
---|---|---|---|
A | x’ R’ D R’ U2 R D’ R’ U2 R2 | ||
A' | x’ R2 U2 R D R’ U2 R D’ R | Inverse of A | |
E | (Lw’ U R D’ R’ U’ R D) x’ (Lw’ U’ R D’ R’ U R D) | Actually two OLLs in a row |
Alternatives
Name | Image | Algorithm | Comment |
---|---|---|---|
E | z U2 R2 F (R U R’ U’)3 F’ R2 U2 | Longer but very easy to remenber. |
Edges only
Name | Image | Algorithm | Comment |
---|---|---|---|
U | R2 U R U R’ U’ R’ U’ R’ U R' | ||
Usym | L2 U’ L’ U’ L U L U L U’ L | Left-handed U perm | |
H | M2’ U M2’ U2 M2’ U M2' | M2’ with ring finger + middle finger | |
Z | M’ U M2’ U M2’ U M’ U2 M2’ [U'] | M2’ with ring finger + middle finger |
Alternatives
Name | Image | Algorithm | Comment |
---|---|---|---|
H | R2 U2’ R U2’ R2’ U2’ R2 U2’ R U2 R2' | Better on bigger cubes | |
Z | R U R’ U R’ U’ R’ U R U’ R’ U’ R2’ U R [U2] | Better on bigger cubes |
Two adjacent corners and two edges
Name | Image | Algorithm | Comment |
---|---|---|---|
T | (R U R’ U’) R’ F R2 U’ R’ U’ (R U R’ F') | ||
J | (R U R’ F’) (R U R’ U’) R’ F R2 U’ R’ [U'] | Same as T but with the last 4 moves now at the beginning | |
Jsym | L’ R’ U2 R U R’ U2 L U’ R [U] | ||
F | R’ U’ F’ (R U R’ U’) R’ F R2 U’ (R’ U’ R U) R’ U R | T perm with an (R’ U’ F’) setup, and a cancellation at the end | |
R | (R’ U2 R U2) (R’ F R U R’ U’) (R’ F’ R2) [U'] | ||
Rsym | (L U2’ L’ U2’) (L F’ L’ U’ L U) (L F L2’) [U] | Left-handed R perm |
The Gs
There is only one algorithm here. The second one is the inverse of the first one (after replacing y’RU’R’ with the equivalent yLU’L). The other two are the left-hand equivalents.
Name | Image | Algorithm | Comment |
---|---|---|---|
G | (R2 Uw) (R’ U R’ U’ R Uw’) R2’ y (L U’ L') | FU-FUR same, FUL adjacent | |
G' | y’ (R’ U’ R) y R2’ (Uw R’ U R U’ R) (Uw’ R2') | FU-FUR same, FUL opposite | |
Gsym | (L2’ Uw’) (L U’ L U L’ Uw) L2 y’ (R U’ R') | FU-FUL same, FUR adjacent | |
G’sym | y (L U L’) y’ L2’ (Uw’ L U’ L’ U L’) (Uw L2) | FU-FUL same, FUR opposite |
Diagonals
Name | Image | Algorithm | Comment |
---|---|---|---|
V | (R’ U R’ U’) y (R’ F’ R2 U’) (R’ U R’ F) (R F) | ||
N | (R’ U L’ U2’ R U’ L)2 [U] | ||
Nsym | (L U’ R U2 L’ U R’)2 [U'] | Left-handed N perm | |
Y | F (R U’ R’ U’) (R U R’ F’) (R U R’ U’) (R’ F R F') |
Alternatives
Name | Image | Algorithm | Comment |
---|---|---|---|
V | z U’ R D (R’ U R U’) z’ (U R’ U’ L) (U2 R U2 R') | Better for one-handed solves |