2020-09-27 on Kevin Guillaumond's blog
I don’t do as much Rubik’s cube solving as I used to and I’m afraid I’m going to eventually forget some algorithms. So I decided to write down the ones I use, starting with the PLLs.
The U movements between square brackets at the end indicate the AUF (they are not cube rotations).
Name | Image | Algorithm | Comment |
---|---|---|---|
A | ![]() |
x’ R’ D R’ U2 R D’ R’ U2 R2 | |
A' | ![]() |
x’ R2 U2 R D R’ U2 R D’ R | Inverse of A |
E | ![]() |
(Lw’ U R D’ R’ U’ R D) x’ (Lw’ U’ R D’ R’ U R D) | Actually two OLLs in a row |
Name | Image | Algorithm | Comment |
---|---|---|---|
E | ![]() |
z U2 R2 F (R U R’ U’)3 F’ R2 U2 | Longer but very easy to remenber. |
Name | Image | Algorithm | Comment |
---|---|---|---|
U | ![]() |
R2 U R U R’ U’ R’ U’ R’ U R' | |
Usym | ![]() |
L2 U’ L’ U’ L U L U L U’ L | Left-handed U perm |
H | ![]() |
M2’ U M2’ U2 M2’ U M2' | M2’ with ring finger + middle finger |
Z | ![]() |
M’ U M2’ U M2’ U M’ U2 M2’ [U'] | M2’ with ring finger + middle finger |
Name | Image | Algorithm | Comment |
---|---|---|---|
H | ![]() |
R2 U2’ R U2’ R2’ U2’ R2 U2’ R U2 R2' | Better on bigger cubes |
Z | ![]() |
R U R’ U R’ U’ R’ U R U’ R’ U’ R2’ U R [U2] | Better on bigger cubes |
Name | Image | Algorithm | Comment |
---|---|---|---|
T | ![]() |
(R U R’ U’) R’ F R2 U’ R’ U’ (R U R’ F') | |
J | ![]() |
(R U R’ F’) (R U R’ U’) R’ F R2 U’ R’ [U'] | Same as T but with the last 4 moves now at the beginning |
Jsym | ![]() |
L’ R’ U2 R U R’ U2 L U’ R [U] | |
F | ![]() |
R’ U’ F’ (R U R’ U’) R’ F R2 U’ (R’ U’ R U) R’ U R | T perm with an (R’ U’ F’) setup, and a cancellation at the end |
R | ![]() |
(R’ U2 R U2) (R’ F R U R’ U’) (R’ F’ R2) [U'] | |
Rsym | ![]() |
(L U2’ L’ U2’) (L F’ L’ U’ L U) (L F L2’) [U] | Left-handed R perm |
There is only one algorithm here. The second one is the inverse of the first one (after replacing y’RU’R’ with the equivalent yLU’L). The other two are the left-hand equivalents.
Name | Image | Algorithm | Comment |
---|---|---|---|
G | ![]() |
(R2 Uw) (R’ U R’ U’ R Uw’) R2’ y (L U’ L') | FU-FUR same, FUL adjacent |
G' | ![]() |
y’ (R’ U’ R) y R2’ (Uw R’ U R U’ R) (Uw’ R2') | FU-FUR same, FUL opposite |
Gsym | ![]() |
(L2’ Uw’) (L U’ L U L’ Uw) L2 y’ (R U’ R') | FU-FUL same, FUR adjacent |
G’sym | ![]() |
y (L U L’) y’ L2’ (Uw’ L U’ L’ U L’) (Uw L2) | FU-FUL same, FUR opposite |
Name | Image | Algorithm | Comment |
---|---|---|---|
V | ![]() |
(R’ U R’ U’) y (R’ F’ R2 U’) (R’ U R’ F) (R F) | |
N | ![]() |
(R’ U L’ U2’ R U’ L)2 [U] | |
Nsym | ![]() |
(L U’ R U2 L’ U R’)2 [U'] | Left-handed N perm |
Y | ![]() |
F (R U’ R’ U’) (R U R’ F’) (R U R’ U’) (R’ F R F') |
Name | Image | Algorithm | Comment |
---|---|---|---|
V | ![]() |
z U’ R D (R’ U R U’) z’ (U R’ U’ L) (U2 R U2 R') | Better for one-handed solves |